

PCPATCH: topological construction of multigrid relaxation methods

Lawrence Mitchell^{1,*}

P. E. Farrell (Oxford) M. G. Knepley (Buffalo) F. Wechsung (Oxford)

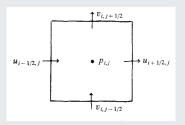
September 27, 2019

¹Department of Computer Science, Durham University

^{*}lawrence.mitchell@durham.ac.uk

Coupled multigrid for Stokes/Navier-Stokes

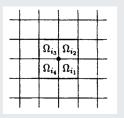
In the SCGS scheme four velocites and one pressure corresponding to one finite difference node are simultaneously updated by inverting a (small) matrix of equations.



Vanka (1986)

p-independent preconditioners for elliptic problems

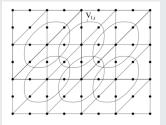
[Each subspace is generated from] $V_i^p = V^p \cap H_0^1(\Omega_i')$ where Ω_i' is the open square centered at the ith vertex



Pavarino (1993)

Multigrid for nearly incompressible elasticity

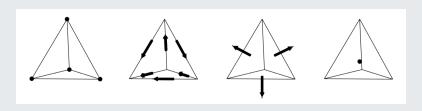
The suggested smoother is a block Jacobi smoother, which takes care of the kernel [...]. These kernel basis functions are captured by subspaces $V_{l,i}$ as shown



Schöberl (1999)

Multigrid in H(div) and H(curl)

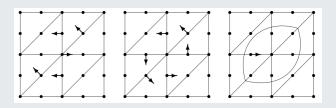
To define the Schwarz smoothers, we can use a decomposition of V_h into local patches consisting of all elements surrounding either an edge or a vertex.



Arnold, Falk, and Winther (2000)

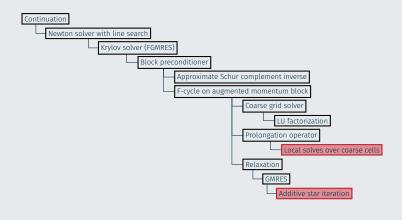
An augmented Lagrangian approach to the Oseen problem

We use a block Gauss-Seidel method [...] based on the decomposition $V_h = \sum_{i=0}^l V_i$. [...For] P2-P0 finite elements the natural choice is to gather nodel DOFs for velocity inside ovals [around a vertex]



Benzi and Olshanskii (2006)

Augmented Lagrangian for 3D Navier-Stokes



Farrell, Mitchell, and Wechsung (2018)

Parallel subspace corrections (Xu 1992)

Find $u \in V$ such that

$$a(u,v)=(f,v)$$
 for all $v\in V$.

input: Space decomposition $V = \sum_{i=1}^{J} V_i$

input: Initial guess $u_k \in V$

input: Weighting operators $w_i: V_i \rightarrow V_i$

output: Updated guess $u_{k+1} \in V$

for i = 1 to J do

Find $\delta u_i \in V_i$ such that

$$a(\delta u_i, v_i) = (f, v_i) - a(u_k, v_i)$$
 for all $v_i \in V_i$.

end

$$u_{k+1} \leftarrow u_k + \sum_{i=1}^J w_i(\delta u_i)$$

Sequential subspace corrections (Xu 1992)

Find $u \in V$ such that

$$a(u,v)=(f,v)$$
 for all $v\in V$.

input: Space decomposition $V = \sum_{i=1}^{J} V_i$

input: Initial guess $u_k \in V$

output: Updated guess $u_{k+1} \in V$

for i = 1 to J do

Find $\delta u_i \in V_i$ such that

$$a(\delta u_i, v_i) = (f, v_i) - a(u_{k+(i-1)/J}, v_i) \text{ for all } v_i \in V_i.$$

$$u_{k+i/J} \leftarrow u_{k+(i-1)/J} + \delta u_i$$

end

Example space decompositions

Jacobi or Gauß-Seidel

$$V = \sum_{i=1}^{N} \operatorname{span}\{\phi_i\}$$

with $\{\phi_1, \ldots, \phi_N\}$ a basis for V.

Domain decomposition

$$V = V_0 + \sum_{i=1}^J V_i$$

with V_0 a coarse space and V_i functions supported in $\Omega_i \subset \Omega$.

Multigrid V-cycle

$$V = \sum_{l=L}^{2} V_l + V_1 + \sum_{l=2}^{L} V_l$$

with $V_1 \subset V_2 \subset \cdots \subset V_L = V$.

4

Unifying computational observation

Relaxation schemes all use subspace correction method with problem-specific choice of space decomposition.

- · Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches
- Combine additively or multiplicatively

Unifying computational observation

Relaxation schemes all use subspace correction method with problem-specific choice of space decomposition.

- · Decompose space (usually) based on some mesh decomposition
- Build and solve little problems on the resulting patches
- · Combine additively or multiplicatively

Challenge

Want to do this inside block preconditioners, and as a multigrid smoother.

Not sufficient to specify dof decomposition on a (single) global matrix.

Requirements

- Want flexible PC \Rightarrow change decomposition easily
- $\boldsymbol{\cdot}$ Need to nest inside more complex solvers

Requirements

- Want flexible PC ⇒ change decomposition easily
- · Need to nest inside more complex solvers

Idea

- Separate topological decomposition from algebraic operators
- User only provides topological description of patches
- Ask discretisation library to make the operators once decomposition is obtained

Idea

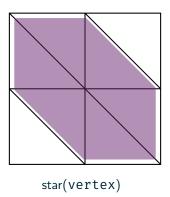
- Separate topological decomposition from algebraic operators
- · User only provides topological description of patches
- Ask discretisation library to make the operators once decomposition is obtained

Library support

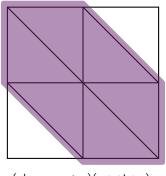
- PETSc: DMPlex + PetscDS
 - -pc_type patch
- · Firedrake:
 - -pc_type python -pc_python_type firedrake.PatchPC
 - -snes_type python -snes_python_type firedrake.PatchSNES

- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.

- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.

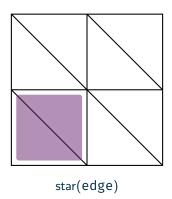


- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.

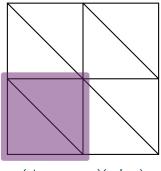


(closure∘star)(vertex)

- DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.



- \cdot DMPlex associates dofs with topological entities in mesh
- A patch is defined by a set of these entities, PCPATCH determines the dofs that correspond to them
- Adjacency relations defined using topological queries: often the topological *star* and *closure* operations.



 $(closure \circ star)(edge)$

· Each patch defined by set of mesh entities

Builtin

Specify patches by selecting:

- 1. Mesh entities $\{p_i\}$ to iterate over (e.g. vertices, cells)
- Adjacency relation that gathers points in patch star entities in star(p_i) vanka entities in (closure o star)(p_i)
 pardecomp entities in Ω_i (local part of parallel mesh)

User-defined

- 1. Custom adjacency relation (e.g. "vertices in closure o star of edges")
- 2. List of patches, plus iteration order \Rightarrow line-/plane-smoothers

Patch assembly

- ✓ If we just want homogeneous Dirichlet, can use list of dofs to select from assembled global operator
- ✓ Completely robust to discretisation library
- X Doesn't allow matrix-free implementation
- **X** Doesn't work for other transmission conditions
- **X** Doesn't work for nonlinear smoothers
- ⇒ Callback interface to get PDE library to assemble on each patch

Callbacks

```
/* Patch Jacobian */
UserComputeOp(PC, Vec state, Mat operator, Patch patch, void *userctx);
/* Patch Residual */
UserComputeF(PC, Vec state, Vec residual, Patch patch, void *userctx);
```

Examples

Which space decomposition?

Theorem (Parameter robust parallel subspace correction)

Find $u \in V$ such that

$$a_0(u, v) + \varepsilon b(u, v) = (f, v)$$
 for all $v \in V$

with a_0 symmetric positive definite and b symmetric positive semi-definite.

Denote the kernel

$$\mathcal{N} := \{ u \in V : b(u, v) = 0 \ \forall v \in V \}.$$

If the space decomposition captures the kernel

$$\mathcal{N} = \sum_{i} \mathcal{N} \cap V_{i},$$

the resulting subspace correction method has convergence independent of ε (Schöberl 1999).

Which space decomposition?

Corollary

"All" we need to do is characterise the kernel: in particular the support of the basis.

Characterising the kernel

Appropriate discrete de Rham complexes can help us finding the support of a basis for $\mathcal{N}.$

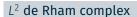
Examples

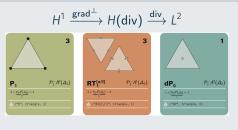
Find
$$u \in V \subset H(\operatorname{div})$$
 s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

L^2 de Rham complex

$$H^1 \xrightarrow{\operatorname{grad}^{\perp}} H(\operatorname{div}) \xrightarrow{\operatorname{div}} L^2$$

Find
$$u \in V \subset H(\operatorname{div})$$
 s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

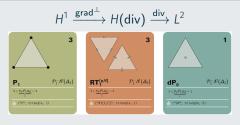




femtable.org

Find
$$u \in V \subset H(\operatorname{div})$$
 s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

L² de Rham complex

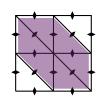


femtable.org

- Exact sequence: $ker(div) = range(grad^{\perp})$
- Need patches containing support of the P_k basis functions ⇒ star around vertices

Find
$$u \in V \subset H(\operatorname{div})$$
 s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

```
-ksp_type cg
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
-patch_
          -pc_patch_construct_dim 0
          -pc_patch_construct_type star
```



Smoother \ γ	0	10^{-1}	10 ⁰	10 ¹	10 ²	10 ³
Point-Jacobi ($k=1$) Point-Jacobi ($k=2$)	11 10	27 45	49 71	68 93	86 113	103 134
Block-Jacobi ($k = 1$) Block-Jacobi ($k = 2$)						12 8

Table 1: Iteration counts for multigrid preconditioned CG using RT_R elements.

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find
$$u \in V \subset H(\operatorname{curl})$$
 s.t. $(u, v)_{L^2} + \gamma (\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V.$

L^2 de Rham complex

$$H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2$$

H(div) and H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find
$$u \in V \subset H(\operatorname{curl})$$
 s.t. $(u, v)_{L^2} + \gamma (\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

L² de Rham complex

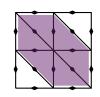
femtable.org

- Exact sequence:
 ker(curl) = range(grad),
 ker(div) = range(curl)
- H(curl): star around vertices
- H(div): star around edges

H(curl) multigrid in 3D (Arnold, Falk, and Winther 2000)

Find
$$u \in V \subset H(\operatorname{curl})$$
 s.t. $(u, v)_{L^2} + \gamma(\operatorname{curl} u, \operatorname{curl} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

- -ksp_type cg
- -pc_type mg
- -mg_levels_
 - -pc_type python
 - -pc python type firedrake.PatchPC
 - -patch
 - -pc patch construct dim 0
 - -pc_patch_construct_type star

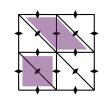


Smoother \ γ	0	10^{-1}	10 ⁰	10 ¹	10 ²	10 ³
Point-Jacobi ($k=1$) Point-Jacobi ($k=2$)	10	48	85	120	150	180
Point-Jacobi (<i>k</i> = 2)	22	115	211	293	370	446
Block-Jacobi (k = 1)		16	18	18	18	18
Block-Jacobi ($k=2$)	9	12	12	12	12	12

Table 2: Iteration counts for multigrid preconditioned CG using Nedelec edge-elements of the first kind.

Find
$$u \in V \subset H(\operatorname{div})$$
 s.t. $(u, v)_{L^2} + \gamma(\operatorname{div} u, \operatorname{div} v)_{L^2} = (f, v)_{L^2} \quad \forall v \in V$.

- -ksp_type cg
- -pc_type mg
- -mg_levels_
 - -pc_type python
 - -pc python type firedrake.PatchPC
 - -patch
 - -pc patch construct dim 1
 - -pc_patch_construct_type star



Smoother \ γ	0	10^{-1}	10 ⁰	10 ¹	10 ²	10 ³
Point-Jacobi (k = 1) Point-Jacobi (k = 2)	11	63	109	146	180	221
Point-Jacobi (<i>k</i> = 2)	26	180	366	531	687	844
Block-Jacobi (<i>k</i> = 1)	12	30	36	36	37	37
Block-Jacobi ($k=2$)	11	17	17	17	17	17

Table 3: Iteration counts for multigrid preconditioned CG using Nedelec face-elements of the first kind.

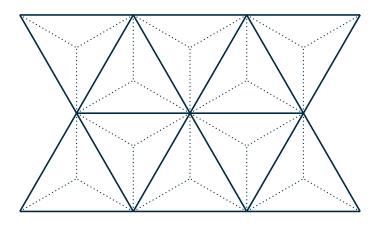
Nearly incompressible elasticity

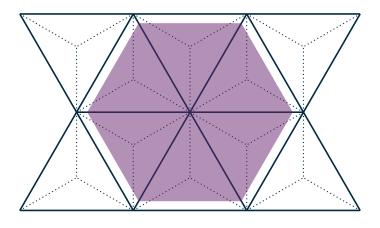
Find $u \in V \subset H^1$ s.t. $(\operatorname{grad} u, \operatorname{grad} v) + \gamma(\operatorname{div} u, \operatorname{div} v) = (f, v) \quad \forall v \in V.$

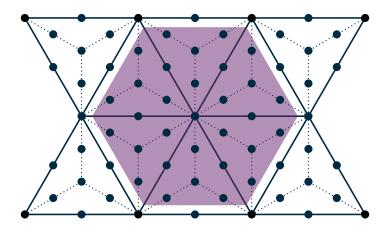
2D Stokes complex

$$H^2 \xrightarrow{\operatorname{grad}^{\perp}} H^1 \xrightarrow{\operatorname{div}} L^2$$

- Decomposition must capture $\ker \operatorname{div} = \operatorname{range} \operatorname{grad}^{\perp}$.
- Support of HCT element is on "macro" mesh \Rightarrow MacroStar







Just need to write custom adjacency to construct patch around each vertex

-ksp_type cg
-pc_type mg
-mg_levels_
-pc type python

-pc python type firedrake.PatchPC

return s + star

```
-patch
     -pc patch construct dim 0
      -pc patch construct type python
      -pc_patch_construct_python_type MacroStar
Just need to write custom adjacency to construct patch around each vertex
class MacroStar(OrderedRelaxation):
   def callback(self, dm, vertex):
        if dm.getLabelValue("MacroVertices", vertex) != 1:
            return None
        s = list(self.star(dm, vertex))
        closures = list(chain(*(self.closure(dm, e) for e in s)))
        want = [v for v in closures if dm.getLabelValue("MacroVertices", v) != 1]
        star = list(chain(*(self.star(dm, v) for v in want)))
```

Find
$$(u, p) \in V \times Q \subset (H^1)^d \times L^2$$
 s.t.
$$(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

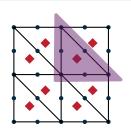
- · P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star

Find
$$(u,p) \in V \times Q \subset (H^1)^d \times L^2$$
 s.t.
$$(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v,q) \in V \times Q.$$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

- · P2-P0: loop over cells, gather closure of star
- P2-P1: loop over vertices, gather closure of star



```
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
    -patch_
          -pc_patch_construct_codim 0
          -pc patch construct type vanka
```

-pc patch exclude subspaces 1

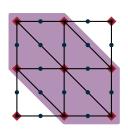
-ksp type gmres

Find
$$(u, p) \in V \times Q \subset (H^1)^d \times L^2$$
 s.t.
$$(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

- · P2-P0: loop over cells, gather closure of star
- · P2-P1: loop over vertices, gather closure of star



```
-ksp_type gmres
-pc_type mg
-mg_levels_
    -pc_type python
    -pc_python_type firedrake.PatchPC
-patch_
    -pc_patch_construct_dim 0
    -pc patch construct type vanka
```

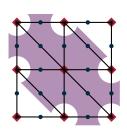
-pc patch exclude subspaces 1

Find
$$(u, p) \in V \times Q \subset (H^1)^d \times L^2$$
 s.t.
$$(\operatorname{grad} u, \operatorname{grad} v) - (p, \operatorname{div} v) - (\operatorname{div} u, q) = (f, v) \quad \forall (v, q) \in V \times Q.$$

Vanka patch

Solve simultaneously for (u, p) on each pressure dof, gathering those velocity dofs that couple to the pressure dof.

- P2-P0: loop over cells, gather closure of star
- · P2-P1: loop over vertices, gather closure of star



```
-pc_type mg
-mg_levels_
-pc_type python
-pc_python_type firedrake.PatchPC
-patch_
-pc_patch_construct_dim 0
-pc patch construct type vanka
```

-pc_patch_exclude_subspaces 1
-pc patch vanka dim 0

-ksp type gmres

Conclusions

- PCPATCH provides simple and flexible interface for subspace correction methods
- · Currently works with DMPlex + PetscDS and Firedrake
- Implements
 - · Additive and multiplicative smoothing
 - · Simultaneous smoothing of multiple fields: monolithic approaches
 - · Partition of unity (or not)
 - Nonlinear relaxation (Firedrake only)
- WIP: faster application of patch solves
 - PETSc (sadly) not designed for lots of tiny problems
 - Significant speedup from constructing patch inverse and hard-coding matvec
 - Just code Newton "by hand" for nonlinear case?
- Paper in preparation

Thanks!

References

- Arnold, D. N., R. S. Falk, and R. Winther (2000). "Multigrid in H(div) and H(curl)". Numerische Mathematik 85. doi:10.1007/s002110000137.
- Arnold, D. N., R. S. Falk, and R. Winther (July 1997). "Preconditioning in H(div) and Applications". Mathematics of Computation 66. doi:10.1090/S0025-5718-97-00826-0.
- Benzi, M. and M. A. Olshanskii (2006). "An Augmented Lagrangian-Based Approach to the Oseen Problem". SIAM Journal on Scientific Computing 28. doi:10.1137/050646421.
- ► Farrell, P. E., L. Mitchell, and F. Wechsung (2018). An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier–Stokes equations at high Reynolds number. To appear in SIAM SISC. arXiv: 1810.03315 [math.NA].
- Pavarino, L. F. (1993). "Additive Schwarz methods for the p-version finite element method". Numerische Mathematik 66. doi:10.1007/BF01385709.
- Schöberl, J. (1999). "Multigrid methods for a parameter dependent problem in primal variables". Numerische Mathematik 84. doi:10.1007/s002110050465.
- Vanka, S. (1986). "Block-implicit multigrid solution of Navier-Stokes equations in primitive variables". Journal of Computational Physics 65. doi:10.1016/0021-9991(86)90008-2.
- Xu, J. (1992). "Iterative methods by space decomposition and subspace correction". SIAM Review 34. doi:10.1137/1034116.