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Anisotropic Goal-Oriented Mesh Adaptation in Firedrake
LMesh Adaptation
LRiemannian Metric Field

Metric-Based Mesh Adaptation.

Riemannian metric fields M = {M(x)}xcq are SPD Vx € R".
.. Orthogonal eigendecomposition M(x) = VAV,

Steiner ellipses [Barral, 2015] Resulting mesh [Barral, 2015]
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L Mesh Adaptation
LHessiam—Ba\sed Adaptation

The Hessian.

Consider interpolating u ~ Z,u € P1.

It is shown in [Frey and Alauzet, 2005] that

- < e’ |H(x)|e
|u hUHﬁoo(K)_'YTEa&(emeg)’é |H(x)|

where v > 0 is a constant related to the spatial dimension.
A metric tensor M = {M(x)}xcq may be defined as
i
M(x) = 2IH()]

where € > 0 is the tolerated error level.
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L_Model Validation
L Test Case

Point Discharge with Diffusion

P Test case taken from
0.0 O‘.‘s‘q Hm]“l . ‘1‘.‘9 2.1 TELEMAC-2D Valida-
- B tion Document 7.0

Analytical solution. [Riadh et al., 2014].
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Finite element forward solution. f=o(x—2,y—5)

(Presented on a 1,024,000 element uniform mesh.)
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L_Model Validation
L Test Case

Point Discharge with Diffusion: Adjoint Problem
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)5 937 e o7 Ry = B1((20,5))
Adjoint solution for J,. .
R, = B%((20,7.5))

(Presented on a 1,024,000 element uniform mesh.)
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L_Model Validation
L Test Case

Point Discharge with Diffusion: Convergence

Elements | Ji(¢) | Ji(¢n) | S(8) | Ja(on)
4,000 0.20757 | 0.20547 | 0.08882 | 0.08901
16,000 0.16904 | 0.16873 | 0.07206 | 0.07205
64,000 0.16263 | 0.62590 | 0.06924 | 0.06922

256,000 | 0.16344 | 0.16343 | 0.06959 | 0.06958

1,024,000 | 0.16344 | 0.16345 | 0.06959 | 0.06958

Ji(¢) : analytical solutions
Ji(¢n) :  P1 finite element solutions
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L Goal-Oriented Adaptation
L'I'heory

Dual Weighted Residual (DWR).

Given a PDE W(u) = 0 and its adjoint written in Galerkin forms

p(up,v) :=L(v) — a(up,v) =0, VveV,
p*(up,v) :=J(v) —a(v,u;) =0, VveV,

= a posteriori error results [Becker and Rannacher, 2001]
J(u) — J(up) = p(up, u* — uf) + R®)

1 1
J(u) — J(up) = Ep(uh, ut —up) + ip*(u;",, u— up) + RO

[Remainders R(?) and R() depend on errors u — up and u* — uj.]
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L Goal-Oriented Adaptation
L'I'heory

DWR Integration by Parts

J(u) = J(up) = p(up, u* = up) + R®)

Applying integration by parts (again) elementwise:
[J(u) = Jun)l| = [(W(un), u™ = up)k + (P (un), u” = up)ok].

m W(up) is the strong residual on K;

m (up) embodies flux terms over elemental boundaries.
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LIsotropic Goal-Oriented Mesh Adaptation

Isotropic Metric

[ () = J(un)l|, ~n = [{(W(un), " = uh)i + (Y(un), u™ = up)ox].

Isotropic case:

Mpn O }
M= .
{ 0 ey
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L Goal-Oriented Adaptation

LIsotropic Goal-Oriented Mesh Adaptation

Isotropic Meshes

Centred receiver (12,246 elements).
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Offset receiver (19,399 elements).
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L Goal-Oriented Adaptation
LAnisotropic Goal-Oriented Mesh Adaptation

A posteriori Approach

Motivated by the approach of [Power et al., 2006], consider the
interpolation error:

[J(u) = J(un)l = [(W(un), u* — up)k + (P(un), 1" — up)ok]

u*—Tpu* u*—TMpu*

This suggests the node-wise metric,

M = [W(up)||H(w),
and correspondingly for the adjoint,

M = [V (up)|[H ()]
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L Goal-Oriented Adaptation

LAnist:.tropic Goal-Oriented Mesh Adaptation

A posteriori Anisotropic Meshes

~—

Centred receiver (16,407 elements
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Offset receiver (9,868 elements).
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LAnisotropic Goal-Oriented Mesh Adaptation

A priori Approach

Alternative a priori error estimate [Loseille et al., 2010]:
J(u) = I(up) = (V4 — W)(u), u") + R.

Assume we have the conservative form W(u) = V - F(u), so

J(u) = J(un) = ((F = Fn)(u), Vu')g = (7 (F = Fn(u), u™))oq.

This gives Riemannian metric fields

L ou*
volume __ :
Mrehme = ; HEW | Z5 |
Msurface :|U*| ﬁ (Z .T,‘(U) . n[_) ‘
i=1
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LAnisotropic Goal-Oriented Mesh Adaptation

L Goal-Oriented Adaptation
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Centred receiver (44,894 elements

Offset receiver (29,143 elements).

14 /20



Anisotropic Goal-Oriented Mesh Adaptation in Firedrake
L Goal-Oriented Adaptation
L Anisotropic Goal-Oriented Mesh Adaptation

Meshes from Combined Metrics (Offset Receiver)

Averaged a posteriori (9,289 elements).  Superposed a posteriori (14,470 elems).

TS

N N

Averaged a priori (25,204 elements). Superposed a priori (49,793 elements).
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L Goal-Oriented Adaptation
LResults

Convergence Analysis: Centred Receiver.
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L Goal-Oriented Adaptation
LResults

Convergence Analysis:

Offset Receive
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L Goal-Oriented Adaptation
L Results

Three Dimensions.

Uniform mesh (1,920,000 elements).

Anisotropic mesh resulting from
averaging a posteriori metrics. ey e e w w0

s —
Adapted mesh (1,766,396 elements).
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LResults

Outlook.

To appear in proceedings of the 28" International Meshing
Roundtable:

JW, N Barral, D Ham, M Piggott, “Anisotropic
Goal-Oriented Mesh Adaptation in Firedrake” (2019).

Future work:
m Time dependent (tidal) problems.
m Other finite element spaces, e.g. DG.
m Boundary and flux terms for anisotropic methods.
]

Realistic desalination application.
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LAppendix

L Combining Metrics

Metric Combination.

Consider metrics My and M». How to combine these in a
meaningful way?

Metric average:
M= %(Ml + Mb).

Metric superposition:
intersection of Steiner ellipses.

Metric superposition [Barral, 2015]
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LAppendix

L Hessian recovery

Double £, projection

We recover H = V7 Vu by solving the auxiliary problem

H=V'g
g=Vu
as
n n
/ T Hydx + / div(7) : gp dx — ZZ/ (gn)iTijnj ds =0, Vr
Q Q =3 i Jo

/Qiﬁ-ghdX:/(muhw-ﬁds—/ﬂdiv(w)uhdx, V).
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LAppendix
LA priori Metric

Accounting for Source Term

Forward equation:
V-F(¢)="1, F(¢)=up—-vVe.

0p* ™ ‘ 0o*

H(R( |\ T IH(F T IH() |67

Adjoint equation:

V-G(¢") =g, G(¢7) =—up" — vV,

— [HG(N] 52|+ M@t | 37] + 1) o,
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