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Introduction

February 2014 in Dawlish, Devon

This cost £35 million to fix and is estimated to have cost the Cornish
economy £1.2 billion



Introduction
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Building a
hydro-morphodynamics 2D
model in Thetis
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Adapted from http://geologycafe.com/class/chapterll.html
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Basic Model Equations

Depth-averaging from the bed to the water-surface and
filtering turbulence:
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Basic Model Equations

Depth-averaging from the bed to the water-surface and
filtering turbulence:

Conservation of suspended sediment
1o} 0 0
&(hC) + a(hFcorrUWC) + gy(hFcorrUZC) -

SPE)b = o

where zs is the fluid surface, 1,; the bed shear stress, Tj; the depth-averaged stresses, es
the diffusivity constant and Fcorr the correction factor.



Calculating the New Bedlevel

Bedlevel (z,) is governed by the Exner equation

-2 o o _p
. d +Vy-Qp=Dp—Ep, (2)

where:
Qp is the bedload transport given by Meyer-Peter-Muller formula,
Dy, — Ep accounts for effects of suspended sediment flow,

m is a morphological factor accelerating bedlevel changes.



Adding Physical Effects

Slope Effect

Accounts for gravity which means sediment moves slower uphill than down-
hill. We impose a magnitude correction:

_ oz
Qp. = Qp <1_T85>’
and a correction on the flow direction (where § is the original angle)

tana =tand — T%.
on

Secondary Current

Accounts for the helical flow effect in curved channels

Inner bank (_//-’ 7 Outer bank



Comparing with Ind

Thetis

DG finite element discretisation with
Pipc — Pipa

+ Locally mass conservative

+ Well-suited to advection dominated
problems

+ Geometrically flexible

+ Allow higher order local

approximations



Comparing with Indu

Thetis

DG finite element discretisation with
Pipc — Pipa

+ Locally mass conservative

+ Well-suited to advection dominated
problems

+ Geometrically flexible

+ Allow higher order local

approximations

Telemac-Mascaret

CG finite element discretisation

Method of characteristics
(hydrodynamics advection)

+ Unconditionally stable

- Not mass conservative

- Diffusive for small timesteps
Distributive schemes (sediment
transport advection)

+ Mass conservative

- Diffusive for small timesteps

- Courant number limitations to
ensure stability



Migrating Trench




Migrating Trench: Initial Set-up
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Bedlevel after 15 h for different morphological scale factors comparing experimental
data, Sisyphe and Thetis with At = 0.05s. Experimental data and initial trench profile
source: Villaret et al. (2016)



Migrating Trench: Issues with Sisyphe

Varying At
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Migrating Tren arying Diffusivity
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Migrating Trench: Final Result
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Migrating Trench: Simulation
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Meander




Meander: Initial Set-up
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Meander mesh and domain
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Meander: Boundary Issue

Issue in velocity resolution at boundary resolved by increasing viscosity
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Meander: Physical Effects
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Meander: Sensitivity to At
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Meander: Final Result
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Comparing scaled bedlevel evolution from Thetis, Sisyphe and experimental data
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Meander: Simulation
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Comparing computational time

Thetis (morphological
scale factor,
increased At)

Thetis (morphological

Sisyph Theti
lsypne es scale factor)

Migrating | 5,07 | 341,717 39,955 12,422
Trench
Meander 980 60,784 10,811 1,212

Comparison of computational time (seconds). For the migrating trench, At = 0.05s
and increased At = 0.3s; for the meander At = 0.1s and increased At = 10s.
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Conclusion




1. Presented the first full morphodynamic model employing a DG based
discretisation;
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morphological scale factor;
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1. Presented the first full morphodynamic model employing a DG based
discretisation;

2. Reported on several new capabilities within Thetis, including bedload
transport, bedlevel changes, slope effect corrections, a secondary
current correction, a sediment transport source term, a velocity
correction factor in the sediment concentration equation, and a
morphological scale factor;

3. Validated our model for two different test cases;

4. Shown our model is both accurate and stable, and has key advantages
in robustness and accuracy over the state-of-the-art industry standard
Siyphe whilst still being comparable in computational cost
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Questions?



Using DG:
- Generate a mesh of elements over domain Q

- Define finite element space on a triangulation (a set of triangles which
do not overlap and the union of which is equal to the closure of Q)

- Derive the weak form of the equation on each triangular element by
multiplying the equation by a test function and integrating it by parts
on each element and using divergence theorem

Using a discontinuous function space requires the definition of the variables
on the element edges thus we use the average and jump operators

{00 = 30 +X7), [hdln = x*n* +x7n, [la =X7 0" +X" 0 (&)

For C, we use an upwinding scheme, so, at each edge, C is chosen to be equal
to its upstream value with respect to velocity. Therefore

/Qwu - VpCdx = — /Q CV - (u)dx + /r CP [[ypu]]nds. (5)

Weak form of diffusivity term uses Symmetric Interior Penalty Galerkin (SIPG)
stabilisation method, as if not discretisation unstable for elliptic operators

~ [ 69 (Va0 = [ (Vi) (VaOx— [ [l - {{esVC s
Q Q r
- /r ([l - {es Yo} }ds + /r o {{es}[Cln - [¥llnds.  (6)
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