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Introduction

February 2014 in Dawlish, Devon

This cost £35 million to fix and is estimated to have cost the Cornish
economy £1.2 billion

3



Introduction

Overengineering...
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Building a
hydro-morphodynamics 2D
model in Thetis



Sediment Transport

Adapted from http://geologycafe.com/class/chapter11.html
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Basic Model Equations

Depth-averaging from the bed to the water-surface and
filtering turbulence:

Hydrodynamics
∂h
∂t +

∂

∂x (hU1) +
∂

∂y (hU2) = 0, (1)
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Basic Model Equations

Depth-averaging from the bed to the water-surface and
filtering turbulence:

Conservation of suspended sediment

∂

∂t (hC) +
∂

∂x (hFcorrU1C) +
∂

∂y (hFcorrU2C) =

∂

∂x

[
h
(
ϵs
∂C
∂x

)]
+

∂

∂y

[
h
(
ϵs
∂C
∂y

)]
+ Eb − Db, (1)

where zs is the fluid surface, τbi the bed shear stress, Tij the depth-averaged stresses, ϵs
the diffusivity constant and Fcorr the correction factor.
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Calculating the New Bedlevel

Bedlevel (zb) is governed by the Exner equation

(1− p′)
m

dzb
dt +∇h · Qb = Db − Eb, (2)

where:

Qb is the bedload transport given by Meyer-Peter-Müller formula,

Db − Eb accounts for effects of suspended sediment flow,

m is a morphological factor accelerating bedlevel changes.
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Adding Physical Effects

Slope Effect

Accounts for gravity which means sediment moves slower uphill than down-
hill. We impose a magnitude correction:

Qb∗ = Qb
(
1−Υ

∂zb
∂s

)
,

and a correction on the flow direction (where δ is the original angle)

tanα = tan δ − T∂zb
∂n .

Secondary Current

Accounts for the helical flow effect in curved channels
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Comparing with Industry Standard Model

Thetis

DG finite element discretisation with
P1DG − P1DG

+ Locally mass conservative

+ Well-suited to advection dominated
problems

+ Geometrically flexible

+ Allow higher order local
approximations
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Comparing with Industry Standard Model

Thetis

DG finite element discretisation with
P1DG − P1DG

+ Locally mass conservative

+ Well-suited to advection dominated
problems

+ Geometrically flexible

+ Allow higher order local
approximations

Telemac-Mascaret

CG finite element discretisation

Method of characteristics
(hydrodynamics advection)

+ Unconditionally stable

- Not mass conservative

- Diffusive for small timesteps

Distributive schemes (sediment
transport advection)

+ Mass conservative

- Diffusive for small timesteps

- Courant number limitations to
ensure stability
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Migrating Trench



Migrating Trench: Initial Set-up

Bedlevel after 15 h for different morphological scale factors comparing experimental
data, Sisyphe and Thetis with ∆t = 0.05 s. Experimental data and initial trench profile

source: Villaret et al. (2016)
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Migrating Trench: Issues with Sisyphe

Varying ∆t

Sisyphe greatly altered by changes
to ∆t

Thetis insensitive to changes in
∆t
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Migrating Trench: Varying Diffusivity

∂

∂t (hC) +
∂

∂x (hFcorrU1C) +
∂

∂y (hFcorrU2C) =

∂

∂x

[
h
(
ϵs
∂C
∂x

)]
+

∂

∂y

[
h
(
ϵs
∂C
∂y

)]
+ Eb − Db, (3)

Sensitivity of Sisyphe to ϵs Sensitivity of Thetis to ϵs
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Migrating Trench: Final Result

Bedlevel from Thetis and Sisyphe after 15 h
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Migrating Trench: Simulation
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Meander



Meander: Initial Set-up

Meander mesh and domain
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Meander: Boundary Issue

Issue in velocity resolution at boundary resolved by increasing viscosity
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Meander: Physical Effects

No physical
corrections

Only slope effect
magnitude

Both slope effect
corrections

All physical
corrections
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Meander: Sensitivity to ∆t

Sisyphe sensitive to changes in ∆t Thetis insensitive to changes in ∆t
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Meander: Final Result

Cross-section at 90° Cross-section at 180°

Comparing scaled bedlevel evolution from Thetis, Sisyphe and experimental data

19



Meander: Simulation
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Comparing computational time

Sisyphe Thetis Thetis (morphological
scale factor)

Thetis (morphological
scale factor,
increased ∆t)

Migrating
Trench

3,427 341,717 39,955 12,422

Meander 980 60,784 10,811 1,212

Comparison of computational time (seconds). For the migrating trench, ∆t = 0.05 s
and increased ∆t = 0.3 s; for the meander ∆t = 0.1 s and increased ∆t = 10 s.

21



Conclusion



Summary

1. Presented the first full morphodynamic model employing a DG based
discretisation;

2. Reported on several new capabilities within Thetis, including bedload
transport, bedlevel changes, slope effect corrections, a secondary
current correction, a sediment transport source term, a velocity
correction factor in the sediment concentration equation, and a
morphological scale factor;

3. Validated our model for two different test cases;

4. Shown our model is both accurate and stable, and has key advantages
in robustness and accuracy over the state-of-the-art industry standard
Siyphe whilst still being comparable in computational cost
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Questions?



Using DG:
• Generate a mesh of elements over domain Ω

• Define finite element space on a triangulation (a set of triangles which
do not overlap and the union of which is equal to the closure of Ω)

• Derive the weak form of the equation on each triangular element by
multiplying the equation by a test function and integrating it by parts
on each element and using divergence theorem

Using a discontinuous function space requires the definition of the variables
on the element edges thus we use the average and jump operators

{{X}} =
1
2
(X+ + X−), [[χ]]n = χ+n+ + χ−n−, [[X]]n = X+ · n+ + X− · n−. (4)

For C, we use an upwinding scheme, so, at each edge, C is chosen to be equal
to its upstream value with respect to velocity. Therefore∫

Ω
ψu · ∇hCdx = −

∫
Ω
C∇h · (uψ)dx+

∫
Γ
Cup [[ψu]]nds. (5)

Weak form of diffusivity term uses Symmetric Interior Penalty Galerkin (SIPG)
stabilisation method, as if not discretisation unstable for elliptic operators

−
∫
Ω
ψ∇h · (ϵs∇hC)dx =

∫
Ω
ϵs(∇hψ) · (∇hC)dx−

∫
Γ
[[ψ]]n · {{ϵs∇hC}}ds

−
∫
Γ
[[C]]n · {{ϵs∇hψ}}ds+

∫
Γ
σ{{ϵs}}[[C]]n · [[ψ]]nds. (6)
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