Source code for FIAT.Sminus


# Copyright (C) 2019 Cyrus Cheng (Imperial College London)
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by David A. Ham (david.ham@imperial.ac.uk), 2019

from sympy import symbols, legendre, Array, diff
import numpy as np
from FIAT.finite_element import FiniteElement
from FIAT.dual_set import make_entity_closure_ids
from FIAT.polynomial_set import mis
from FIAT.reference_element import compute_unflattening_map, flatten_reference_cube

x, y, z = symbols('x y z')
variables = (x, y, z)
leg = legendre


[docs] def triangular_number(n): return int((n+1)*n/2)
[docs] def choose_ijk_total(degree): top = 1 for i in range(1, 2 + degree + 1): top = i * top bottom = 1 for i in range(1, degree + 1): bottom = i * bottom return int(top / (2 * bottom))
[docs] class TrimmedSerendipity(FiniteElement): def __init__(self, ref_el, degree, mapping): if degree < 1: raise Exception("Trimmed serendipity elements only valid for k >= 1") flat_el = flatten_reference_cube(ref_el) dim = flat_el.get_spatial_dimension() self.fdim = dim if dim != 2: if dim != 3: raise Exception("Trimmed serendipity elements only valid for dimensions 2 and 3") flat_topology = flat_el.get_topology() entity_ids = {} cur = 0 for top_dim, entities in flat_topology.items(): entity_ids[top_dim] = {} for entity in entities: entity_ids[top_dim][entity] = [] if dim == 2: for j in sorted(flat_topology[1]): entity_ids[1][j] = list(range(cur, cur + degree)) cur = cur + degree if (degree >= 2): entity_ids[2][0] = list(range(cur, cur + 2*triangular_number(degree - 2) + degree)) cur += 2*triangular_number(degree - 2) + degree else: # 3-d case. entity_ids[3] = {} for j in sorted(flat_topology[1]): entity_ids[1][j] = list(range(cur, cur + degree)) cur = cur + degree if (degree >= 2): if (degree < 4): for j in sorted(flat_topology[2]): entity_ids[2][j] = list(range(cur, cur + 2*triangular_number(degree - 2) + degree)) cur = cur + 2*triangular_number(degree - 2) + degree else: for j in sorted(flat_topology[2]): entity_ids[2][j] = list(range(cur, cur + 3 * degree - 4)) cur = cur + 3*degree - 4 if (degree >= 4): if (degree == 4): entity_ids[3][0] = list(range(cur, cur + 6)) elif (degree == 5): entity_ids[3][0] = list(range(cur, cur + 11)) else: interior_ids = 0 for i in range(0, degree - 4): interior_ids += 3 * choose_ijk_total(i) entity_ids[3][0] = list(range(cur, cur + 6 + (degree - 4) * 3 + interior_ids)) else: entity_ids[3][0] = list(range(cur, cur)) formdegree = 1 entity_closure_ids = make_entity_closure_ids(flat_el, entity_ids) super(TrimmedSerendipity, self).__init__(ref_el=ref_el, dual=None, order=degree, formdegree=formdegree, mapping=mapping) topology = ref_el.get_topology() unflattening_map = compute_unflattening_map(topology) unflattened_entity_ids = {} unflattened_entity_closure_ids = {} for dim, entities in sorted(topology.items()): unflattened_entity_ids[dim] = {} unflattened_entity_closure_ids[dim] = {} for dim, entities in sorted(flat_topology.items()): for entity in entities: unflat_dim, unflat_entity = unflattening_map[(dim, entity)] unflattened_entity_ids[unflat_dim][unflat_entity] = entity_ids[dim][entity] unflattened_entity_closure_ids[unflat_dim][unflat_entity] = entity_closure_ids[dim][entity] self.entity_ids = unflattened_entity_ids self.entity_closure_ids = unflattened_entity_closure_ids self._degree = degree self.flat_el = flat_el
[docs] def degree(self): return self._degree
[docs] def get_nodal_basis(self): raise NotImplementedError("get_nodal_basis not implemented for trimmed serendipity")
[docs] def get_dual_set(self): raise NotImplementedError("get_dual_set is not implemented for trimmed serendipity")
[docs] def get_coeffs(self): raise NotImplementedError("get_coeffs not implemented for trimmed serendipity")
[docs] def tabulate(self, order, points, entity=None): if entity is None: entity = (self.ref_el.get_dimension(), 0) entity_dim, entity_id = entity transform = self.ref_el.get_entity_transform(entity_dim, entity_id) points = transform(points) phivals = {} for o in range(order+1): alphas = mis(self.fdim, o) for alpha in alphas: try: polynomials = self.basis[alpha] except KeyError: zr = tuple([0] * self.fdim) polynomials = diff(self.basis[zr], *zip(variables, alpha)) self.basis[alpha] = polynomials T = np.zeros((len(polynomials[:, 0]), self.fdim, len(points))) for i in range(len(points)): subs = {v: points[i][k] for k, v in enumerate(variables[:self.fdim])} for ell in range(self.fdim): for j, f in enumerate(polynomials[:, ell]): T[j, ell, i] = f.evalf(subs=subs) phivals[alpha] = T return phivals
[docs] def entity_dofs(self): """Return the map of topological entities to degrees of freedom for the finite element.""" return self.entity_ids
[docs] def entity_closure_dofs(self): """Return the map of topological entities to degrees of freedom on the closure of those entities for the finite element.""" return self.entity_closure_ids
[docs] def value_shape(self): return (self.fdim,)
[docs] def dmats(self): raise NotImplementedError
[docs] def get_num_members(self, arg): raise NotImplementedError
[docs] def space_dimension(self): return int(len(self.basis[tuple([0] * self.fdim)])/self.fdim)
# Splitting the E Lambda function into two seperate functions for E Lambda and E tilde Lambda. # Correlating with Andrew's paper, leg(j, x_mid) should be a polynomial x^i, leg(j, y_mid) should be y^i, # dy[0] should represent y-1, dy[1] should represent y+1 (and similar for the dx and x+/- 1). # Still not sure why we use for loops in only the EL tuple but not the ELTilde tuple.
[docs] def e_lambda_1_2d_part_one(deg, dx, dy, x_mid, y_mid): EL = tuple( [(0, -leg(j, y_mid) * dx[0]) for j in range(deg)] + [(0, -leg(j, y_mid) * dx[1]) for j in range(deg)] + [(-leg(j, x_mid)*dy[0], 0) for j in range(deg)] + [(-leg(j, x_mid)*dy[1], 0) for j in range(deg)]) return EL
[docs] def e_lambda_tilde_1_2d_part_two(deg, dx, dy, x_mid, y_mid): ELTilde = tuple([(-leg(deg, x_mid) * dy[0], -leg(deg-1, x_mid) * dx[0] * dx[1] / (deg+1))] + [(-leg(deg, x_mid) * dy[1], leg(deg-1, x_mid) * dx[0] * dx[1] / (deg+1))] + [(-leg(deg-1, y_mid) * dy[0] * dy[1] / (deg+1), -leg(deg, y_mid) * dx[0])] + [(leg(deg-1, y_mid) * dy[0] * dy[1] / (deg+1), -leg(deg, y_mid) * dx[1])]) return ELTilde
[docs] def e_lambda_1_2d(deg, dx, dy, x_mid, y_mid): EL = e_lambda_1_2d_part_one(deg, dx, dy, x_mid, y_mid) ELTilde = e_lambda_tilde_1_2d_part_two(deg, dx, dy, x_mid, y_mid) result = EL + ELTilde return result
[docs] def determine_f_lambda_portions_2d(deg): if (deg < 2): DegsOfIteration = [] else: DegsOfIteration = [] for i in range(2, deg): DegsOfIteration += [i] return DegsOfIteration
[docs] def f_lambda_1_2d_pieces(current_deg, dx, dy, x_mid, y_mid): if (current_deg == 2): FLpiece = [(leg(0, x_mid) * leg(0, y_mid) * dy[0] * dy[1], 0)] FLpiece += [(0, leg(0, x_mid) * leg(0, y_mid) * dx[0] * dx[1])] else: target_power = current_deg - 2 FLpiece = tuple([]) for j in range(0, target_power + 1): k = target_power - j FLpiece += tuple([(leg(j, x_mid) * leg(k, y_mid) * dy[0] * dy[1], 0)]) FLpiece += tuple([(0, leg(j, x_mid) * leg(k, y_mid) * dx[0] * dx[1])]) return FLpiece
[docs] def f_lambda_1_2d_trim(deg, dx, dy, x_mid, y_mid): DegsOfIteration = determine_f_lambda_portions_2d(deg) FL = [] for i in DegsOfIteration: FL += f_lambda_1_2d_pieces(i, dx, dy, x_mid, y_mid) return tuple(FL)
[docs] def f_lambda_1_2d_tilde(deg, dx, dy, x_mid, y_mid): FLTilde = tuple([]) FLTilde += tuple([(leg(deg - 2, y_mid)*dy[0]*dy[1], 0)]) FLTilde += tuple([(0, leg(deg - 2, x_mid)*dx[0]*dx[1])]) for k in range(1, deg - 1): FLTilde += tuple([(leg(k, x_mid) * leg(deg - k - 2, y_mid) * dy[0] * dy[1], -leg(k - 1, x_mid) * leg(deg - k - 1, y_mid) * dx[0] * dx[1])]) return tuple(FLTilde)
[docs] def trimmed_f_lambda_2d(deg, dx, dy, x_mid, y_mid): FL = f_lambda_1_2d_trim(deg, dx, dy, x_mid, y_mid) FLT = f_lambda_1_2d_tilde(deg, dx, dy, x_mid, y_mid) result = FL + FLT return result
[docs] def e_lambda_1_3d_trimmed(max_deg, dx, dy, dz, x_mid, y_mid, z_mid): EL = tuple([]) # assignment to edge x=y=0 for i in range(0, max_deg): EL += tuple([(0, 0, leg(i, z_mid) * dx[0] * dy[0])]) # assignment to edge x=0, y=1 for i in range(0, max_deg): EL += tuple([(0, 0, leg(i, z_mid) * dy[1] * dx[0])]) # assignment to edge x = 1, y = 0 for i in range(0, max_deg): EL += tuple([(0, 0, leg(i, z_mid) * dx[1] * dy[0])]) # assignment to edge x = 1, y = 1 for i in range(0, max_deg): EL += tuple([(0, 0, leg(i, z_mid) * dx[1] * dy[1])]) # assignment to edge x = 0, z = 0 for i in range(0, max_deg): EL += tuple([(0, leg(i, y_mid) * dx[0] * dz[0], 0)]) # assignment to edge x = 0, z = 1 for i in range(0, max_deg): EL += tuple([(0, leg(i, y_mid) * dx[0] * dz[1], 0)]) # assignment to edge x = 1, z = 0 for i in range(0, max_deg): EL += tuple([(0, leg(i, y_mid) * dx[1] * dz[0], 0)]) # assignment to edge x = 1, z = 1 for i in range(0, max_deg): EL += tuple([(0, leg(i, y_mid) * dx[1] * dz[1], 0)]) # assignment to edge y = 0, z = 0 for i in range(0, max_deg): EL += tuple([(leg(i, x_mid) * dy[0] * dz[0], 0, 0)]) # assignment to edge y = 0, z = 1 for i in range(0, max_deg): EL += tuple([(leg(i, x_mid) * dy[0] * dz[1], 0, 0)]) # assignment to edge y = 1, z = 0 for i in range(0, max_deg): EL += tuple([(leg(i, x_mid) * dy[1] * dz[0], 0, 0)]) # assignment to edge y = 1, z = 1 for i in range(0, max_deg): EL += tuple([(leg(i, x_mid) * dy[1] * dz[1], 0, 0)]) return EL
[docs] def f_lambda_1_3d_trimmed(max_deg, dx, dy, dz, x_mid, y_mid, z_mid): FL = tuple([]) # Assignment to face x = 0, Ftilde FL += tuple([(0, leg(max_deg - 2, z_mid) * dx[0] * dz[0] * dz[1], 0)]) FL += tuple([(0, 0, leg(max_deg - 2, y_mid) * dx[0] * dy[0] * dy[1])]) for j in range(1, max_deg - 1): FL += tuple([(0, leg(j, y_mid) * leg(max_deg - j - 2, z_mid) * dx[0] * dz[0] * dz[1], -leg(j - 1, y_mid) * leg(max_deg - j - 1, z_mid) * dx[0] * dy[0] * dy[1])]) # Assignment to face x = 0, F for j in range(1, max_deg - 1): k = max_deg - j - 2 FL += tuple([(0, leg(j, y_mid) * leg(k, z_mid) * dx[0] * dz[0] * dz[1], 0)]) FL += tuple([(0, 0, leg(j, z_mid) * leg(k, x_mid) * dx[0] * dy[0] * dy[1])]) # Assignment to face x = 1, Ftilde FL += tuple([(0, leg(max_deg - 2, z_mid) * dx[1] * dz[0] * dz[1], 0)]) FL += tuple([(0, 0, leg(max_deg - 2, y_mid) * dx[1] * dy[0] * dy[1])]) for j in range(1, max_deg - 1): FL += tuple([(0, leg(j, y_mid) * leg(max_deg - j - 2, z_mid) * dx[1] * dz[0] * dz[1], -leg(j - 1, y_mid) * leg(max_deg - j - 1, z_mid) * dx[1] * dy[0] * dy[1])]) # Assignment to face x = 1, F for j in range(1, max_deg - 1): k = max_deg - j - 2 FL += tuple([(0, leg(j, y_mid) * leg(k, z_mid) * dx[1] * dz[0] * dz[1], 0)]) FL += tuple([(0, 0, leg(j, z_mid) * leg(k, x_mid) * dx[1] * dy[0] * dy[1])]) # Assignment to face y = 0, Ftilde FL += tuple([(leg(max_deg - 2, z_mid) * dy[0] * dz[0] * dz[1], 0, 0)]) FL += tuple([(0, 0, leg(max_deg - 2, x_mid) * dy[0] * dx[0] * dx[1])]) for j in range(1, max_deg - 1): FL += tuple([(leg(j, x_mid) * leg(max_deg - j - 2, z_mid) * dy[0] * dz[0] * dz[1], 0, -leg(j - 1, x_mid) * leg(max_deg - j - 1, z_mid) * dy[0] * dx[0] * dx[1])]) # Assignment to face y = 0, F for j in range(1, max_deg - 1): k = max_deg - j - 2 FL += tuple([(leg(j, x_mid) * leg(k, z_mid) * dy[0] * dz[0] * dz[1], 0, 0)]) FL += tuple([(0, 0, leg(j, z_mid) * leg(k, y_mid) * dy[0] * dx[0] * dx[1])]) # Assignment to face y = 1, Ftilde FL += tuple([(leg(max_deg - 2, z_mid) * dy[1] * dz[0] * dz[1], 0, 0)]) FL += tuple([(0, 0, leg(max_deg - 2, x_mid) * dy[1] * dx[0] * dx[1])]) for j in range(1, max_deg - 1): FL += tuple([(leg(j, x_mid) * leg(max_deg - j - 2, z_mid) * dy[1] * dz[0] * dz[1], 0, -leg(j - 1, x_mid) * leg(max_deg - j - 1, z_mid) * dy[1] * dx[0] * dx[1])]) # Assignment to face y = 1, F for j in range(1, max_deg - 1): k = max_deg - j - 2 FL += tuple([(leg(j, x_mid) * leg(k, z_mid) * dy[1] * dz[0] * dz[1], 0, 0)]) FL += tuple([(0, 0, leg(j, z_mid) * leg(k, y_mid) * dy[1] * dx[0] * dx[1])]) # Assignment to face z = 0, Ftilde FL += tuple([(leg(max_deg - 2, y_mid) * dz[0] * dy[0] * dy[1], 0, 0)]) FL += tuple([(0, leg(max_deg - 2, x_mid) * dz[0] * dx[0] * dx[1], 0)]) for j in range(1, max_deg - 1): FL += tuple([(leg(j, x_mid) * leg(max_deg - j - 2, y_mid) * dz[0] * dy[0] * dy[1], -leg(j - 1, x_mid) * leg(max_deg - j - 1, y_mid) * dz[0] * dx[0] * dx[1], 0)]) # Assignment to face z = 0, F for j in range(1, max_deg - 1): k = max_deg - j - 2 FL += tuple([(leg(j, x_mid) * leg(k, y_mid) * dz[0] * dy[0] * dy[1], 0, 0)]) FL += tuple([(0, leg(j, y_mid) * leg(k, x_mid) * dz[0] * dx[0] * dx[1], 0)]) # Assignment to face z = 1, Ftilde FL += tuple([(leg(max_deg - 2, y_mid) * dz[1] * dy[0] * dy[1], 0, 0)]) FL += tuple([(0, leg(max_deg - 2, x_mid) * dz[1] * dx[0] * dx[1], 0)]) for j in range(1, max_deg - 1): FL += tuple([(leg(j, x_mid) * leg(max_deg - j - 2, y_mid) * dz[1] * dy[0] * dy[1], -leg(j - 1, x_mid) * leg(max_deg - j - 1, y_mid) * dz[1] * dx[0] * dx[1], 0)]) # Assignment to face z = 1, F for j in range(1, max_deg - 1): k = max_deg - j - 2 FL += tuple([(leg(j, x_mid) * leg(k, y_mid) * dz[1] * dy[0] * dy[1], 0, 0)]) FL += tuple([(0, leg(j, y_mid) * leg(k, x_mid) * dz[1] * dx[0] * dx[1], 0)]) return FL
[docs] def determine_I_lambda_1_portions_3d(deg): if (deg < 4): DegsOfIteration = [] else: Degs = tuple([]) DegsOfIteration = tuple([]) for x in range(0, deg - 3): for y in range(0, deg - 3 - x): for z in range(0, deg - 3 - x - y): Degs += tuple([(x, y, z)]) for degs in Degs: if (degs[0] + degs[1] + degs[2] == deg - 4): DegsOfIteration += tuple([degs]) return DegsOfIteration
[docs] def I_lambda_1_3d(deg, dx, dy, dz, x_mid, y_mid, z_mid): DegsOfIteration = determine_I_lambda_1_portions_3d(deg) IL = tuple([]) for Degs in DegsOfIteration: IL += tuple([(leg(Degs[0], x_mid) * leg(Degs[1], y_mid) * leg(Degs[2], z_mid) * dy[0] * dy[1] * dz[0] * dz[1], 0, 0)]) IL += tuple([(0, leg(Degs[0], x_mid) * leg(Degs[1], y_mid) * leg(Degs[2], z_mid) * dx[0] * dx[1] * dz[0] * dz[1], 0)]) IL += tuple([(0, 0, leg(Degs[0], x_mid) * leg(Degs[1], y_mid) * leg(Degs[2], z_mid) * dy[0] * dy[1] * dy[0] * dy[1])]) return IL
[docs] def I_lambda_1_tilde_3d(deg, dx, dy, dz, x_mid, y_mid, z_mid): ILtilde = tuple([]) ILtilde += tuple([(leg(deg - 4, y_mid) * dy[0] * dy[1] * dz[0] * dz[1], 0, 0)]) ILtilde += tuple([(leg(deg - 4, z_mid) * dy[0] * dy[1] * dz[0] * dz[1], 0, 0)]) ILtilde += tuple([(0, leg(deg - 4, x_mid) * dx[0] * dx[1] * dz[0] * dz[1], 0)]) ILtilde += tuple([(0, leg(deg - 4, z_mid) * dx[0] * dx[1] * dz[0] * dz[1], 0)]) ILtilde += tuple([(0, 0, leg(deg - 4, x_mid) * dx[0] * dx[1] * dy[0] * dy[1])]) ILtilde += tuple([(0, 0, leg(deg - 4, y_mid) * dx[0] * dx[1] * dy[0] * dy[1])]) for j in range(1, deg - 3): ILtilde += tuple([(leg(j, x_mid) * leg(deg - j - 4, y_mid) * dy[0] * dy[1] * dz[0] * dz[1], -leg(j - 1, x_mid) * leg(deg - j - 3, y_mid) * dx[0] * dx[1] * dz[0] * dz[1], 0)]) ILtilde += tuple([(leg(j, x_mid) * leg(deg - j - 4, z_mid) * dy[0] * dy[1] * dz[0] * dz[1], 0, -leg(j - 1, x_mid) * leg(deg - j - 3, z_mid) * dx[0] * dx[1] * dy[0] * dy[1])]) if (deg > 5): ILtilde += tuple([(0, leg(j, y_mid) * leg(deg - j - 4, z_mid) * dx[0] * dx[1] * dz[0] * dz[1], -leg(j - 1, y_mid) * leg(deg - j - 3, z_mid) * dx[0] * dx[1] * dy[0] * dy[1])]) return ILtilde
# This is always 1-forms regardless of 2 or 3 dimensions.
[docs] class TrimmedSerendipityEdge(TrimmedSerendipity): def __init__(self, ref_el, degree): if degree < 1: raise Exception("Trimmed Serendipity_k edge elements only valid for k >= 1") flat_el = flatten_reference_cube(ref_el) dim = flat_el.get_spatial_dimension() if dim != 2: if dim != 3: raise Exception("Trimmed Serendipity_k edge elements only valid for dimensions 2 and 3") verts = flat_el.get_vertices() dx = ((verts[-1][0] - x)/(verts[-1][0] - verts[0][0]), (x - verts[0][0])/(verts[-1][0] - verts[0][0])) dy = ((verts[-1][1] - y)/(verts[-1][1] - verts[0][1]), (y - verts[0][1])/(verts[-1][1] - verts[0][1])) x_mid = 2*x-(verts[-1][0] + verts[0][0]) y_mid = 2*y-(verts[-1][1] + verts[0][1]) try: dz = ((verts[-1][2] - z)/(verts[-1][2] - verts[0][2]), (z - verts[0][2])/(verts[-1][2] - verts[0][2])) z_mid = 2*z-(verts[-1][2] + verts[0][2]) except IndexError: dz = None z_mid = None if dim == 2: EL = e_lambda_1_2d_part_one(degree, dx, dy, x_mid, y_mid) else: EL = e_lambda_1_3d_trimmed(degree, dx, dy, dz, x_mid, y_mid, z_mid) if degree >= 2: if dim == 2: FL = trimmed_f_lambda_2d(degree, dx, dy, x_mid, y_mid) else: FL = f_lambda_1_3d_trimmed(degree, dx, dy, dz, x_mid, y_mid, z_mid) else: FL = () if dim == 3: if degree >= 4: IL = I_lambda_1_3d(degree, dx, dy, dz, x_mid, y_mid, z_mid) + I_lambda_1_tilde_3d(degree, dx, dy, dz, x_mid, y_mid, z_mid) else: IL = () Sminus_list = EL + FL if dim == 3: Sminus_list = Sminus_list + IL if dim == 2: self.basis = {(0, 0): Array(Sminus_list)} else: self.basis = {(0, 0, 0): Array(Sminus_list)} super().__init__(ref_el=ref_el, degree=degree, mapping="covariant piola")
[docs] class TrimmedSerendipityFace(TrimmedSerendipity): def __init__(self, ref_el, degree): if degree < 1: raise Exception("Trimmed serendipity face elements only valid for k >= 1") flat_el = flatten_reference_cube(ref_el) dim = flat_el.get_spatial_dimension() if dim != 2: raise Exception("Trimmed serendipity face elements only valid for dimensions 2") verts = flat_el.get_vertices() dx = ((verts[-1][0] - x)/(verts[-1][0] - verts[0][0]), (x - verts[0][0])/(verts[-1][0] - verts[0][0])) dy = ((verts[-1][1] - y)/(verts[-1][1] - verts[0][1]), (y - verts[0][1])/(verts[-1][1] - verts[0][1])) x_mid = 2*x-(verts[-1][0] + verts[0][0]) y_mid = 2*y-(verts[-1][1] + verts[0][1]) EL = e_lambda_1_2d_part_one(degree, dx, dy, x_mid, y_mid) if degree >= 2: FL = trimmed_f_lambda_2d(degree, dx, dy, x_mid, y_mid) else: FL = () Sminus_list = EL + FL Sminus_list = [[-a[1], a[0]] for a in Sminus_list] self.basis = {(0, 0): Array(Sminus_list)} super().__init__(ref_el=ref_el, degree=degree, mapping="contravariant piola")