Source code for finat.powell_sabin
import FIAT
from gem import ListTensor
from finat.argyris import _edge_transform
from finat.fiat_elements import ScalarFiatElement
from finat.physically_mapped import Citations, identity, PhysicallyMappedElement
[docs]
class QuadraticPowellSabin6(PhysicallyMappedElement, ScalarFiatElement):
def __init__(self, cell, degree=2):
if Citations is not None:
Citations().register("PowellSabin1977")
super().__init__(FIAT.QuadraticPowellSabin6(cell))
[docs]
def basis_transformation(self, coordinate_mapping):
Js = [coordinate_mapping.jacobian_at(vertex)
for vertex in self.cell.get_vertices()]
h = coordinate_mapping.cell_size()
d = self.cell.get_dimension()
M = identity(self.space_dimension())
cur = 0
for i in range(d+1):
cur += 1 # skip the vertex
J = Js[i]
for j in range(d):
for k in range(d):
M[cur+j, cur+k] = J[j, k] / h[i]
cur += d
return ListTensor(M)
[docs]
class QuadraticPowellSabin12(PhysicallyMappedElement, ScalarFiatElement):
def __init__(self, cell, degree=2, avg=False):
self.avg = avg
if Citations is not None:
Citations().register("PowellSabin1977")
super().__init__(FIAT.QuadraticPowellSabin12(cell))
[docs]
def basis_transformation(self, coordinate_mapping):
J = coordinate_mapping.jacobian_at([1/3, 1/3])
V = identity(self.space_dimension())
sd = self.cell.get_dimension()
top = self.cell.get_topology()
voffset = sd + 1
for v in sorted(top[0]):
s = voffset * v
for i in range(sd):
for j in range(sd):
V[s+1+i, s+1+j] = J[j, i]
_edge_transform(V, 1, 0, self.cell, coordinate_mapping, avg=self.avg)
# Patch up conditioning
h = coordinate_mapping.cell_size()
for v in sorted(top[0]):
for k in range(sd):
V[:, voffset*v+1+k] /= h[v]
return ListTensor(V.T)