from functools import partial
from mpi4py import MPI
from pyop2 import op2, PermutedMap
from firedrake.petsc import PETSc
from firedrake.preconditioners.base import PCBase
import firedrake.dmhooks as dmhooks
import numpy
__all__ = ['FacetSplitPC']
[docs]
class FacetSplitPC(PCBase):
""" A preconditioner that splits a function into interior and facet DOFs.
Internally this creates a PETSc PC object that can be controlled
by options using the extra options prefix ``facet_``.
This allows for statically-condensed preconditioners to be applied to
linear systems involving the matrix applied to the full set of DOFs. Code
generated for the matrix-free operator evaluation in the space with full
DOFs will run faster than the one with interior-facet decoposition, since
the full element has a simpler structure.
"""
needs_python_pmat = False
_prefix = "facet_"
_permutation_cache = {}
[docs]
def get_permutation(self, V, W):
key = (V, W)
if key not in self._permutation_cache:
indices = get_permutation_map(V, W)
if V._comm.allreduce(numpy.all(indices[:-1] <= indices[1:]), MPI.PROD):
self._permutation_cache[key] = None
else:
self._permutation_cache[key] = indices
return self._permutation_cache[key]
[docs]
def initialize(self, pc):
from finat.ufl import RestrictedElement, MixedElement, TensorElement, VectorElement
from firedrake import FunctionSpace, TestFunctions, TrialFunctions
from firedrake.assemble import allocate_matrix, TwoFormAssembler
_, P = pc.getOperators()
appctx = self.get_appctx(pc)
fcp = appctx.get("form_compiler_parameters")
prefix = pc.getOptionsPrefix()
options_prefix = prefix + self._prefix
options = PETSc.Options(options_prefix)
mat_type = options.getString("mat_type", "submatrix")
if P.getType() == "python":
ctx = P.getPythonContext()
a = ctx.a
bcs = tuple(ctx.row_bcs)
else:
ctx = dmhooks.get_appctx(pc.getDM())
a = ctx.Jp or ctx.J
bcs = tuple(ctx._problem.bcs)
V = a.arguments()[-1].function_space()
assert len(V) == 1, "Interior-facet decomposition of mixed elements is not supported"
def restrict(ele, restriction_domain):
if isinstance(ele, VectorElement):
return type(ele)(restrict(ele._sub_element, restriction_domain), dim=ele.num_sub_elements)
elif isinstance(ele, TensorElement):
return type(ele)(restrict(ele._sub_element, restriction_domain), shape=ele._shape, symmetry=ele._symmety)
else:
return RestrictedElement(ele, restriction_domain)
# W = V[interior] * V[facet]
W = FunctionSpace(V.mesh(), MixedElement([restrict(V.ufl_element(), d) for d in ("interior", "facet")]))
assert W.dim() == V.dim(), "Dimensions of the original and decomposed spaces do not match"
mixed_operator = a(sum(TestFunctions(W)), sum(TrialFunctions(W)), coefficients={})
mixed_bcs = tuple(bc.reconstruct(V=W[-1], g=0) for bc in bcs)
self.perm = None
self.iperm = None
indices = self.get_permutation(V, W)
if indices is not None:
self.perm = PETSc.IS().createGeneral(indices, comm=V._comm)
self.iperm = self.perm.invertPermutation()
if mat_type != "submatrix":
self.mixed_op = allocate_matrix(mixed_operator,
bcs=mixed_bcs,
form_compiler_parameters=fcp,
mat_type=mat_type,
options_prefix=options_prefix)
self._assemble_mixed_op = TwoFormAssembler(mixed_operator, tensor=self.mixed_op,
form_compiler_parameters=fcp,
bcs=mixed_bcs).assemble
self._assemble_mixed_op()
mixed_opmat = self.mixed_op.petscmat
def _permute_nullspace(nsp):
if not (nsp.handle and self.iperm):
return nsp
vecs = [vec.duplicate() for vec in nsp.getVecs()]
for vec in vecs:
vec.permute(self.iperm)
return PETSc.NullSpace().create(constant=nsp.hasConstant(), vectors=vecs, comm=nsp.getComm())
mixed_opmat.setNullSpace(_permute_nullspace(P.getNullSpace()))
mixed_opmat.setNearNullSpace(_permute_nullspace(P.getNearNullSpace()))
mixed_opmat.setTransposeNullSpace(_permute_nullspace(P.getTransposeNullSpace()))
elif self.perm:
self._permute_op = partial(PETSc.Mat().createSubMatrixVirtual, P, self.iperm, self.iperm)
mixed_opmat = self._permute_op()
else:
mixed_opmat = P
# Internally, we just set up a PC object that the user can configure
# however from the PETSc command line. Since PC allows the user to specify
# a KSP, we can do iterative by -facet_pc_type ksp.
scpc = PETSc.PC().create(comm=pc.comm)
scpc.incrementTabLevel(1, parent=pc)
# We set a DM and an appropriate SNESContext on the constructed PC so one
# can do e.g. fieldsplit.
mixed_dm = W.dm
self._dm = mixed_dm
# Create new appctx
self._ctx_ref = self.new_snes_ctx(pc,
mixed_operator,
mixed_bcs,
mat_type,
fcp,
options_prefix=options_prefix)
scpc.setDM(mixed_dm)
scpc.setOptionsPrefix(options_prefix)
scpc.setOperators(A=mixed_opmat, P=mixed_opmat)
with dmhooks.add_hooks(mixed_dm, self, appctx=self._ctx_ref, save=False):
scpc.setFromOptions()
self.pc = scpc
[docs]
def update(self, pc):
if hasattr(self, "mixed_op"):
self._assemble_mixed_op()
elif hasattr(self, "_permute_op"):
for mat in self.pc.getOperators():
mat.destroy()
P = self._permute_op()
self.pc.setOperators(A=P, P=P)
self.pc.setUp()
[docs]
def apply(self, pc, x, y):
if self.perm:
x.permute(self.iperm)
dm = self._dm
with dmhooks.add_hooks(dm, self, appctx=self._ctx_ref):
self.pc.apply(x, y)
if self.perm:
x.permute(self.perm)
y.permute(self.perm)
[docs]
def applyTranspose(self, pc, x, y):
if self.perm:
x.permute(self.iperm)
dm = self._dm
with dmhooks.add_hooks(dm, self, appctx=self._ctx_ref):
self.pc.applyTranspose(x, y)
if self.perm:
x.permute(self.perm)
y.permute(self.perm)
[docs]
def view(self, pc, viewer=None):
super(FacetSplitPC, self).view(pc, viewer)
if hasattr(self, "pc"):
viewer.printfASCII("PC using interior-facet decomposition\n")
self.pc.view(viewer)
[docs]
def destroy(self, pc):
if hasattr(self, "pc"):
if hasattr(self, "_permute_op"):
for mat in self.pc.getOperators():
mat.destroy()
self.pc.destroy()
if hasattr(self, "iperm"):
if self.iperm:
self.iperm.destroy()
if hasattr(self, "perm"):
if self.perm:
self.perm.destroy()
def split_dofs(elem):
""" Split DOFs into interior and facet DOF, where facets are sorted by entity.
"""
entity_dofs = elem.entity_dofs()
ndim = elem.cell.get_spatial_dimension()
edofs = [[], []]
for key in sorted(entity_dofs.keys()):
vals = entity_dofs[key]
edim = key
try:
edim = sum(edim)
except TypeError:
pass
for k in sorted(vals.keys()):
edofs[edim < ndim].extend(sorted(vals[k]))
return tuple(numpy.array(e, dtype=PETSc.IntType) for e in edofs)
def restricted_dofs(celem, felem):
""" Find which DOFs from felem are on celem
:arg celem: the restricted :class:`finat.FiniteElement`
:arg felem: the unrestricted :class:`finat.FiniteElement`
:returns: :class:`numpy.array` with indices of felem that correspond to celem
"""
csplit = split_dofs(celem)
fsplit = split_dofs(felem)
if len(csplit[0]) and len(csplit[1]):
csplit = [numpy.concatenate(csplit)]
fsplit = [numpy.concatenate(fsplit)]
k = len(csplit[0]) == 0
if len(csplit[k]) != len(fsplit[k]):
raise ValueError("Finite elements have different DOFs")
perm = numpy.empty_like(csplit[k])
perm[csplit[k]] = numpy.arange(len(perm), dtype=perm.dtype)
return fsplit[k][perm]
def get_permutation_map(V, W):
perm = numpy.empty((V.dof_count, ), dtype=PETSc.IntType)
perm.fill(-1)
vdat = V.make_dat(val=perm)
offset = 0
wdats = []
for Wsub in W:
val = numpy.arange(offset, offset + Wsub.dof_count, dtype=PETSc.IntType)
wdats.append(Wsub.make_dat(val=val))
offset += Wsub.dof_dset.layout_vec.sizes[0]
sizes = [Wsub.finat_element.space_dimension() * Wsub.value_size for Wsub in W]
eperm = numpy.concatenate([restricted_dofs(Wsub.finat_element, V.finat_element) for Wsub in W])
pmap = PermutedMap(V.cell_node_map(), eperm)
kernel_code = f"""
void permutation(PetscInt *restrict x,
const PetscInt *restrict xi,
const PetscInt *restrict xf){{
for(PetscInt i=0; i<{sizes[0]}; i++) x[i] = xi[i];
for(PetscInt i=0; i<{sizes[1]}; i++) x[i+{sizes[0]}] = xf[i];
return;
}}
"""
kernel = op2.Kernel(kernel_code, "permutation", requires_zeroed_output_arguments=False)
op2.par_loop(kernel, V.mesh().cell_set,
vdat(op2.WRITE, pmap),
wdats[0](op2.READ, W[0].cell_node_map()),
wdats[1](op2.READ, W[1].cell_node_map()))
own = V.dof_dset.layout_vec.sizes[0]
perm = perm.reshape((-1, ))
perm = V.dof_dset.lgmap.apply(perm, result=perm)
return perm[:own]